问题
填空题
设f(x)=ax-b,其中a,b为实数,f1(x)=f(x),fn+1(x)=f(fn(x)),n=1,2,3,…,若f7(x)=128x+381,则a+b=______.
答案
由f1(x)=f(x),fn+1(x)=f(fn(x)),n=1,2,3,…,
又∵f7(x)=128x+381
∴a7x-(a6+a5+…+1)b=128x+381
∴a7=128且-(a6+a5+…+1)b=381
∴a=2,b=-3
∴a+b=-1
故答案是:-1