问题
解答题
已知直线l1:ax-y+2a=0,l2:(2a-3)x+ay+a=0
(1)若l1∥l2,求实数a的值;
(2)若l1⊥l2,求实数a的值.
答案
(1)直线l1的法向量为
=(a,-1),直线l2的法向量为n1
=(2a-3,a)n2
因l1∥l2所以
∥n1 n2
即a2+2a-3=0得a=-3或1
经检验均符合题意,故a=-3或1
(2)l1⊥l2⇔
⊥n1
⇔n2
•n1
=0n2
故a(2a-3)-a=0,
∴a=0或2.