问题
解答题
圆x2+y2=1与x,y轴的正半轴分别相交于A,B两点.
(Ⅰ)求AB所在的直线方程;
(Ⅱ)过点A做两条互相垂直的直线分别与圆交于P,Q两点,试求△PAQ面积的最大值,并指出此时PQ所在的直线方程.
答案
(I)由题可知A(1,0),B(0,1)…(1分),所以AB所在的直线方程y=-x+1…(3分)
(II)解法1:由题可知直线AP,AQ的斜率都存在,且不能为0,…(4分)
设AP的斜率为k,则AQ的斜率为-
,AP的直线方程为kx-y-k=01 k
所以do-AP=
,从而:|AP|=2|k| k2+1
=1- d 2O-AP
…(6分)2 k2+1
同理得:|AQ|=
,所以S△APQ=2|k| k2+1
|AP|•|AQ|=21 2
=|k| k2+1
≤1…(8分)2 |k|+ 1 |k|
(当且仅当k=±1时等号成立)
所以△PAQ面积的最大值为1,此时PQ的方程为x=0…(10分)
解法2:由题可知∠PAQ始终为直角,所以PQ必通过圆心,从而|PQ|=2
当A点距离PQ最远时,即△PAQ为等腰直角三角形时,
△PAQ面积取最大值1
此时PQ的方程为x=0