问题
填空题
定义映射f:A→B,其中A={(m,n)|m,n∈R},B=R,已知对所有的有序正整数对(m,n)满足下述条件:①f(m,1)=1,②若n>m,f(m,n)=0;③f(m+1,n)=n[f(m,n)+f(m,n-1)]
则f(2,2)=______;f(n,2)=______.
答案
f(2,2)=f(1+1,2)=2[f(1,2)+f(1,1)]=2,
∴f(2,2)=2;
f(n,2)=2[f(n-1,2)+f(n-1,1)]=2f(n-1,2)+2=2(n-1)f(n-2,2)=…=n!
由题意,不妨设m<n,则
f(n,2)=2[f(n-1,2)+f(n-1,1)]
=2f(n-1,2)+2
=2×2[f(n-2,2)+f(n-1,1)]+2
=22f(n-2,2)+4+2
=…
=2n-1f(1,2)+2n-1+2n-2+…+4+2
=2n-1+2n-2+…+4+2
=2n-2.
故答案为:2;2n-2.