问题 解答题

已知二次函数f(x)满足f(x+1)-f(x)=2x,f(0)=1.

(1)求f(x)的解析式;

(2)求y=f(x)在[-1,1]上的最大值.

答案

(1)设f(x)=ax2+bx+c

∵f(x+1)-f(x)=2x,

∴a(x+1)2+b(x+1)+c-(ax2+bx+c)=2x

即:

2a=2
a+b=0

即a=1,b=-1

又由f(0)=1.

得:c=1

∴f(x)=x2-x+1

(2)由(1)知,函数f(x)=x2-x+1的图象为

开口方向朝上,以x=

1
2
为对称轴的抛物线

故在区间[-1,1]上,当x=-1时,

函数取最大值f(-1)=3

选择题
单项选择题