问题 填空题

设V是全体平面向量构成的集合.若映射f:V→R满足:对任意向量a=(x1,y1)∈V,b=(x2,y2)∈V,以及任意λ∈R,均有f(λa+(1-λ)b)=λf(a)+(1-λ)f(b),则称映射f具有性质P.现给出如下映射:

①f1:V→R,f1(m)=x+y+1,m=(x,y)∈V;

②f2:V→R,f2(m)=x-y,m=(x,y)∈V;

③f3:V→R,f3(m)=x2+y,m=(x,y)∈V.

其中,具有性质P的映射的序号为______.(写出所有具有性质P的映射的序号)

答案

设 a=(x1,y1),b=(x2,y2),则λ a+(1-λ) b=(λx1+(1-λ)x2,λy1+(1-λ)y2),

对于①,f[λa+(1-λ)b]=λx1+(1-λ)x2+λy1+(1-λ)y2+1=λ(x1+y1)+(1-λ)(x2+y2)+1

而λf( a)+(1-λ)f( b)=λ(x1+y1+1)+(1-λ)(x2+y2+1)═λ(x1+y1)+(1-λ)(x2+y2)+1,

f1满足性质p;

对于②,f[λ a+(1-λ) b]=λx1+(1-λ)x2-λy1-(1-λ)y2=λ(x1-y1)+(1-λ)(x2-y2

而λf( a)+(1-λ)f( b)=λ(x1-y1)+(1-λ)(x2-y2),f2满足性质P

对于③,f2(λa+(1-λb))=[λx1+(1-λ)x2]2+[λy1+(1-λ)y2],λf2(a)+(1-λ)f2(b)=λ(x12+y1)+(1-λ)(x22+y2

∴f2(λa+(1-λb))≠λf2(a)+(1-λ)f2(b),∴映射f3不具备性质P.

故答案为:①②

单项选择题
单项选择题