问题 解答题
已知向量
a
=(sinx,-1),
b
=(
3
cosx,-
1
2
),函数f(x)=(
a
+
b
)•
a
-2
(1)求函数f(x)的最小正周期T及单调减区间;
(2)已知a,b,c分别为△ABC内角A,B,C的对边,其中A为锐角,a=2
3
,c=4,且f(A)=1.求A,b和△ABC的面积.
答案

解析:(1)∵

a
=(sinx,-1),
b
=(
3
cosx,-
1
2
)

∴(

a
+
b
a
=(sinx+
3
cosx,-
3
2
)
•(sinx,-1)

=sin2x+

3
sinxcosx+
3
2

=

1-cos2x
2
+
3
sin2x
2
+
3
2

=sin(2x-

π
6
)+2,

f(x)=(

a
+
b
)•
a
-2=sin(2x-
π
6
)

T=

2
=π.

π
2
+2kπ≤2x-
π
6
2
+2kπ,

解得kπ+

π
3
≤x≤kπ+
6
(k∈Z).

∴单调递减区间是[kπ+

π
3
,kπ+
6
](k∈Z).

(2)∵f(A)=1,∴sin(2A-

π
6
)=1,

∵A为锐角,∴2A-

π
6
=
π
2
,解得A=
π
3

由正弦定理得

a
sinA
=
c
sinC

sinC=

4×sin
π
3
4
3
=sinC=
4sin
π
3
2
3
=1,C∈(0,π),∴C=
π
2

B=π-A-C=

π
6
,∴b=
1
2
c
=2.

S△ABC=

1
2
×2×2
3
=2
3

单项选择题 A2型题
单项选择题