问题 解答题
已知函数f(x)=
2
cos(2x-
π
4
)
,x∈R.
(1)求函数f(x)的最小正周期和单调递增区间;
(2)求函数f(x)在区间[-
π
8
π
2
]
上的最小值和最大值,并求出取得最值时x的值.
答案

解(1)因为f(x)=

2
cos(2x-
π
4
).

所以函数f(x)的最小正周期为T=

π
=π,

由单调区间-π+2kπ≤2x-

π
4
≤ 2kπ,得到-
8
+kπ≤x≤
π
8
+ kπ

故函数f(x)的单调递增区间为[-

8
+kπ  , 
π
8
+ kπ]k为正整数.

(2)因为f(x)=

2
cos(2x-
π
4
)在区间[ -
π
8
π
8
]
上为增区间,

在区间[

π
8
π
2
]上为减函数,又f( -
π
8
)=0
f(
π
8
)=
2
f(
π
2
)=-1

故函数f(x)在区间[-

π
8
π
2
]上的最大值为
2
,,此时x=
π
8

最小值为-1,此时x=

π
2

单项选择题
单项选择题