问题
解答题
已知O为坐标原点,向量
(Ⅰ)记函数f(α)=
(Ⅱ)若O,P,C三点共线,求|
|
答案
(Ⅰ)∵
=(sinα,1),OA
=(cosα,0),OB
=(-sinα,2)OC
∴
=(cosα-sinα,-1),AB
=(2sinα,-1)CA
设
=(x,y),则OP
=(x-cosα,y),BP
由
=AB
得,BP
,x=2cosα-sinα y=-1
故
=(2cosα-sinα,-1),则OP
=(sinα-cosα,1),PB
∴f(α)=(sinα-cosα,1)•(2sinα,-1)
=2sin2α-2sinαcosα-1
=-(sin2α+cos2α)
=-
sin(2α+2
)π 4
∴f(α)的最小正周期T=π.
(Ⅱ)由O,P,C三点共线可得:
∥OP 0C
则(-1)×(-sinα)=2×(2cosα-sinα),
解得tanα=
,4 3
∴sin2α=
=2sinαcosα sin2α+cos2α
=2tanα 1+tan2α
,24 25
∴|
+OA
|=OB (sinα+cosα)2+1
=
=2+sin2α
.74 5