问题 解答题
已知O为坐标原点,向量
OA
=(sinα,1),
OB
=(cosα,0),
OC
=(-sinα,2)
,点P满足
AB
=
BP

(Ⅰ)记函数f(α)=
PB
CA
,求函数f(α)的最小正周期;
(Ⅱ)若O,P,C三点共线,求|
OA
+
OB
|
的值.
答案

(Ⅰ)∵

OA
=(sinα,1),
OB
=(cosα,0),
OC
=(-sinα,2)

AB
=(cosα-sinα,-1),
CA
=(2sinα,-1)

OP
=(x,y),则
BP
=(x-cosα,y)

AB
=
BP
得,
x=2cosα-sinα
y=-1

OP
=(2cosα-sinα,-1),则
PB
=(sinα-cosα,1)

∴f(α)=(sinα-cosα,1)•(2sinα,-1)

=2sin2α-2sinαcosα-1

=-(sin2α+cos2α)

=-

2
sin(2α+
π
4
)

∴f(α)的最小正周期T=π.

(Ⅱ)由O,P,C三点共线可得:

OP
0C

则(-1)×(-sinα)=2×(2cosα-sinα),

解得tanα=

4
3

sin2α=

2sinαcosα
sin2α+cos2α
=
2tanα
1+tan2α
=
24
25

|

OA
+
OB
|=
(sinα+cosα)2+1

=

2+sin2α
=
74
5

问答题
填空题