如图所示,在光滑水平地面上有一固定的挡板,挡板上固定一个轻弹簧.现有一质量M=3kg,长L=4m的小车AB(其中O为小车的中点,AO部分粗糙,OB部分光滑),一质量为m=1kg的小物块(可视为质点),放在车的最左端,车和小物块一起以v0=4m/s的速度在水平面上向右匀速运动,车撞到挡板后瞬间速度变为零,但未与挡板粘连.已知车OB部分的长度大于弹簧的自然长度,弹簧始终处于弹性限度内,小物块与车AO部分之间的动摩擦因数为μ0.3,重力加速度g=10m/s2.求:
(1)小物块和弹簧相互作用的过程中,弹簧具有的最大弹性势能;
(2)小物块和弹簧相互作用的过程中,弹簧对小物块的冲量;
(3)小物块最终停在小车上的位置距A端多远.
(1)对小物块,有ma=-μmg
根据运动学公式v2-v02=2aL 2
由能量关系
mv2=Ep,1 2
解得EP=2J.
(2)设小物块离开弹簧时的速度为v1,有
mv12=Ep.1 2
对小物块,根据动量定理 I=-mv1-mv
由⑤⑥式并代入数据得I=-4kgm/s.
弹簧对小物块的冲量大小为4kgm/s,方向水平向左.
(3)小物块滑过O点和小车相互作用,由动量守恒mv1=(m+M)v2.
由能量关系μmgx=
mv12-1 2
(m+M)v22 1 2
小物块最终停在小车上距A的距离xA=
-x L 2
解得xA=1.5m.
答:(1)小物块和弹簧相互作用的过程中,弹簧具有的最大弹性势能为2J.
(2)小物块和弹簧相互作用的过程中,弹簧对小物块的冲量大小为4kgm/s,方向水平向左.
(3)小物块最终停在小车上的位置距A端为1.5m.