问题
解答题
关于x的一元二次方程x2+3x+m﹣1=0的两个实数根分别为x1,x2.
(1)求m的取值范围;
(2)若2(x1+x2)+x1x2+10=0,求m的值.
答案
(1)m≤;(2)-3.
题目分析:(1)因为方程有两个实数根,所以根的判别式要大于等于0,即△≥0,据此即可求出m的取值范围;(2)根据一元二次方程根与系数的关系,将x1+x2=-3,x1x2=m-1代入2(x1+x2)+x1x2+10=0,解关于m的方程即可.
试题解析:(1)∵方程有两个实数根,
∴△≥0,
∴9-4×1×(m-1)≥0,
解得m≤;
(2)∵x1+x2=-3,x1x2=m-1,
又∵2(x1+x2)+x1x2+10=0,
∴2×(-3)+m-1+10=0,
∴m=-3.