问题 解答题
已知函数f(x)=
1
2
-cos2(x+
π
4
)+sin(x+
π
4
)cos(x+
π
4
)

(I)求函数f(x)的最大值和周期;
(II)设角α∈(0,2π),f(α)=
2
2
,求α.
答案

(I)函数f(x)=

1
2
-cos2(x+
π
4
)+sin(x+
π
4
)cos(x+
π
4
)=
1
2
1
2
[1+cos(2x+
π
2
)] +
1
2
sin(2x+
π
2
)

=

1
2
sin(2x+
π
2
)-
1
2
cos(2x+
π
2
)
=
2
2
sin[(2x+
π
2
)-
π
4
]
=
2
2
sin(2x+
π
4
)

∴函数f(x)的最大值为

2
2
,周期为T=π

(II)∵f(α)=

2
2
2
2
sin(2α+
π
4
)=
2
2
sin(2α+
π
4
)=1

2α+

π
4
=2kπ+
π
2
  k∈Z,∴2α=2kπ+
π
4
   k∈Z

α=kπ+

π
8
   k∈Z

∵α∈(0,2π),∴α=

π
8
α=
8

多项选择题
单项选择题