问题
解答题
已知f(x)=cos2x+sinxcosx,g(x)=2sin(x+
(1)求f(x)的最小正周期及单调增区间; (2)若f(α)+g(α)=
|
答案
(1)y=cos2x+sinxcosx=
+1+cos2x 2
sin2x=1 2
sin(2x+2 2
)+π 4 1 2
∴T=
=π,由 2kπ-2π 2
≤2x+π 2
≤π 4
+2kπ k∈Z,即 kπ-π 2
≤x≤3π 8
+kπ k∈Z,π 8
所以函数的单调增区间为:[-
π+kπ,3 8
+kπ] (k∈Z).π 8
(2)g(x)=2sin(x+
)sin(x-π 4
)=-sin(2x+π 4
)=-cos2x,π 2
因为f(x)+g(x)=
+1+cos2x 2
sin2x-cos2x=1 2
+1 2
sin2x-1 2
cos2x=1 2
+1 2
sin(2x-2 2
)π 4
f(α)+g(α)=
,5 6
+1 2
sin(2α-2 2
)=π 4 5 6
sin(2α-
)=π 4
α∈[2 3
,3π 8
]5π 8
2α∈[
,3π 4
] 2α-5π 4
∈[π 4
,π]π 2
cos(2α-
)=-π 4 7 3
sin2α=sin(2α-
+π 4
)π 4
=sin(2α-
)cosπ 4
+cos(2α-π 4
)sinπ 4 π 4
=
× 2 3
+(-2 2
)×7 3
=2 2
-1 3
=14 6 2- 14 6