问题 解答题
已知f(x)=cos2x+sinxcosx,g(x)=2sin(x+
π
4
)sin(x-
π
4
)

(1)求f(x)的最小正周期及单调增区间;
(2)若f(α)+g(α)=
5
6
,且α∈[
8
8
]
求sin2α的值.
答案

(1)y=cos2x+sinxcosx=

1+cos2x
2
+
1
2
sin2x=
2
2
sin(2x+
π
4
+
1
2

∴T=

2
=π,由 2kπ-
π
2
≤2x+
π
4
π
2
+2kπ   k∈Z
,即 kπ-
8
≤x≤
π
8
+kπ   k∈Z

所以函数的单调增区间为:[-

3
8
π+kπ,
π
8
+kπ] (k∈Z).

(2)g(x)=2sin(x+

π
4
)sin(x-
π
4
)=-sin(2x+
π
2
)=-cos2x,

因为f(x)+g(x)=

1+cos2x
2
+
1
2
sin2x-cos2x=
1
2
+
1
2
sin2x-
1
2
cos2x
=
1
2
+
2
2
sin(2x-
π
4

f(α)+g(α)=

5
6
1
2
+
2
2
sin(2α-
π
4
)=
5
6

sin(2α-

π
4
)=
2
3
  α∈[
8
8
]

2α∈[

4
4
]  2α-
π
4
∈[
π
2
,π]

cos(2α-

π
4
)=-
7
3

sin2α=sin(2α-

π
4
+
π
4

=sin(2α-

π
4
)cos
π
4
+cos(2α-
π
4
)sin
π
4

=

2
3
× 
2
2
+(-
7
3
)×
2
2
=
1
3
-
14
6
=
2-
14
6

单项选择题 A3/A4型题
单项选择题