问题 选择题
在整数集Z中,被5除所得余数为k的所有整数组成一个“类”,记为[k],即[k]={5n+k丨n∈Z},k=0,1,2,3,4.给出如下四个结论:
①2011∈[1];
②﹣3∈[3];
③Z=[0]∪[1]∪[2]∪[3]∪[4];
④“整数a,b属于同一“类”的充要条件是“a﹣b∈[0]”.
其中,正确结论的个数是(        )
A.1B.2C.3D.4
答案

答案:C

题目分析:根据题中“类”的理解,在整数集Z中,被5除所得余数为k的所有整数组成一个“类”,

对于各个结论进行分析:①∵2011÷5=402…1;②∵﹣3÷5=0…2,③整数集中的数被5除的数可以且只可以分成五类,故Z=[0]∪[1]∪[2]∪[3]∪[4];④从正反两个方面考虑即可.

解:①∵2011÷5=402…1,∴2011∈[1],故①对;

②∵﹣3=5×(﹣1)+2,∴对﹣3?[3];故②错;

③∵整数集中的数被5除的数可以且只可以分成五类,故Z=[0]∪[1]∪[2]∪[3]∪[4],故③对;

④∵整数a,b属于同一“类”,∴整数a,b被5除的余数相同,从而a﹣b被5除的余数为0,反之也成立,故“整数a,b属于同一“类”的充要条件是“a﹣b∈[0]”.故④对.

∴正确结论的个数是3.

故选C.

点评:本题主要考查了选修3同余的性质,具有一定的创新,关键是对题中“类”的题解,属于创新题.

多项选择题
单项选择题