问题
填空题
f(x)=3x+sinx+1(x∈R),若f(t)=2,则f(-t)的值为________.
答案
0
由f(t)=3t+sint+1=2得3t+sint=1,所以f(-t)=-3t-sint+1=-1+1=0.
f(x)=3x+sinx+1(x∈R),若f(t)=2,则f(-t)的值为________.
0
由f(t)=3t+sint+1=2得3t+sint=1,所以f(-t)=-3t-sint+1=-1+1=0.