问题 解答题
已知函数f(x)=2sinxcos(x+
π
3
)+
3
cos2x+
1
2
sin2x

(1)求函数f(x)的最小正周期;   
(2)求函数f(x)的最大值与最小值;
(3)写出函数f(x)的单调递增区间.
答案

f(x)=2sinxcos(x+

π
3
)+
3
cos2x+
1
2
sin2x

=2sinx(cosxcos

π
3
-sinxsin
π
3
)+
3
cos2x+
1
2
sin2x

=sinxcosx-

3
sin2x+
3
cos2x+
1
2
sin2x

=sin2x+

3
cos2x

=2sin(2x+

π
3
),

(1)因为T=

2
=π,所以f(x)的最小正周期为π;

(2)由-1≤sin(2x+

π
3
)≤1,得到-2≤f(x)≤2,

则函数f(x)的最大值为2,最小值为-2;

(3)令2kπ-

π
2
≤2x+
π
3
≤2kπ+
π
2

解得:kπ-

12
≤x≤kπ+
π
12

则f(x)的单调递增区间为:[kπ-

12
,kπ+
π
12
].

单项选择题
单项选择题