已知一根长20m,截面0.2m×0.2m均匀混凝土杆,弹性模量E=3.2×1010N/m2,质量密度ρ=2400kg/m3,杆下端固定,杆上端受到一半正弦脉冲力激励,F0=100N,τ=5ms。据此即可求出t=3.0ms、5.5ms时杆中最大应力及传播深度(忽略—切阻尼)。
参考答案:
(1)由弹性模量公式求得应力波沿杆传播的波速C为。
(2)当t1=3.0ms时,应力波传播至深度z1
z1=Ct1=3651×0.003=10.95m
当t2=5.5ms时,应力波传播至深度z2
z2=Ct2=3651×0.0055=20m
所以t2=5.5ms,应力波正好传播至杆件的固定端端部,下行压力波传至固定端反射为压力波,应力加倍,此时杆中应力最大,σ=2500×2=5000N/m2。