问题
填空题
已知直线l1:x+a(a+1)y+1=0和直线l2:bx+y+1=0垂直,且直线l2分别与x轴、y轴交于点A、B;O为原点,若△AOB的面积存在最小值,则实数b的取值范围是 ______.
答案
由两直线垂直,得出b=-a(a+1)=-a2-a,
l2分别与x轴、y轴交于点A(-
,0)(b≠0)、B(0,-1).1 b
故△AOB的面积为
,1 |2b|
若△AOB的面积存在最小值,也就是|b|=|a2+a|存在最大值,
因此b∈(-∞,0)∪(0,+∞).
故答案为:(-∞,0)∪(0,+∞).