问题 填空题
已知:函数f(x)=2cos2(x-
π
4
)-[sin(x+
π
4
)+cos(x+
π
4
)]2(x∈R)

(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)当函数f(x)取得最大值时,求自变量x的集合.
答案

f(x)=2cos2(x-

π
4
)-[sin(x+
π
4
)+cos(x+
π
4
)] 2

=1+cos(2x-

π
2
)-[
2
sin(x+
π
2
) ] 2

=1+sin2x-2cos2x=sin2x-cos2x  

=

2
sin(2x-
π
4
)

(1)T=

2

(2)当 f(x)取最大值时,sin(2x-

π
4
)=1,即2x-
π
4
=
π
2
+2kπ
⇒{x|x=kπ+
8
,k∈Z
}

选择题
选择题