问题
填空题
函数f(x)=sin2x(cos2x+sin2x)的最小正周期是______.
答案
sin2x(cos2x+sin2x)
=sin2xcos2x+sin22x
=
sin4x+1 2 1-cos4x 2
=
sin(4x-2 2
)+π 4
,1 2
∵ω=4,∴T=
=2π 4
.π 2
故答案为:π 2
函数f(x)=sin2x(cos2x+sin2x)的最小正周期是______.
sin2x(cos2x+sin2x)
=sin2xcos2x+sin22x
=
sin4x+1 2 1-cos4x 2
=
sin(4x-2 2
)+π 4
,1 2
∵ω=4,∴T=
=2π 4
.π 2
故答案为:π 2