问题 解答题
设向量
α
=(
3
sin2x,sinx+cosx),
β
=(1,sinx-cosx),其中x∈R,函数f(x)=
α
β
.(1)求f(x) 的最小正周期;
(2)若f(θ)=
3
,其中0<θ<
π
2
,求cos(θ+
π
6
)的值.
答案

(1)∵f(x)=

α
β
=
3
sin2x+(sinx+cosx)(sinx-cosx)

=

3
sin2x-cos2x

=2(

3
2
sin2x-
1
2
cos2x)

=2sin(2x-

π
6
),

∴T=

2
=π.即f (x) 的最小正周期为π.

(2)∵f (θ)=

3
,∴2sin(2θ-
π
6
)=
3
,∴sin(2θ-
π
6
)=
3
2

∵0<θ<

π
2
,∴-
π
6
<2θ-
π
6
6
,∴2θ-
π
6
=
π
3
3

解得θ=

π
4
12

∴当θ=

π
4
时,cos(θ+
π
6
)
=cos(
π
4
+
π
6
)
=cos
π
4
cos
π
6
-sin
π
4
sin
π
6
=
6
-
2
4

θ=

12
时,cos(θ+
π
6
)
=cos
12
=-cos
12
=
2
-
6
4

单项选择题
单项选择题