问题
填空题
命题“存在x∈R,使得|x-1|-|x+1|>3”的否定是______.
答案
根据特称命题的否定是全称命题可知,存在x∈R,使得|x-1|-|x+1|>3的否定是:
任意x∈R,都有|x-1|-|x+1|≤3
故答案为:任意x∈R,都有|x-1|-|x+1|≤3
命题“存在x∈R,使得|x-1|-|x+1|>3”的否定是______.
根据特称命题的否定是全称命题可知,存在x∈R,使得|x-1|-|x+1|>3的否定是:
任意x∈R,都有|x-1|-|x+1|≤3
故答案为:任意x∈R,都有|x-1|-|x+1|≤3