问题 填空题
函数f(x)=cos(2x-
π
3
)+2sin(x-
π
4
)sin(x+
π
4
)的最小正周期为______,单调减区间为______.
答案

函数f(x)=cos(2x-

π
3
)+2sin(x-
π
4
)sin(x+
π
4

=cos(2x-

π
3
)+2sin(x-
π
4
)sin[
π
2
+(x-
π
4
)]

=cos(2x-

π
3
)+2sin(x-
π
4
)cos(x-
π
4

=cos(2x-

π
3
)+sin(2x-
π
2

=cos(2x-

π
3
)-cos2x

=cos2xcos

π
3
+sin2xsin
π
3
-cos2x

=

3
2
sin2x-
1
2
cos2x

=sin(2x-

π
6
),

∵ω=2,∴T=

2
=π;

由正弦函数的单调减区间为[2kπ+

π
2
,2kπ+
2
],k∈Z,

得到2kπ+

π
2
≤2x-
π
6
≤2kπ+
2
,k∈Z,

解得kπ+

π
3
≤x≤kπ+
6
,k∈Z,

则函数f(x)的单调减区间为[kπ+

π
3
,kπ+
6
],k∈Z.

故答案为:π;[kπ+

π
3
,kπ+
6
],k∈Z

问答题 案例分析题
问答题 简答题