函数f(x)=cos(2x-
|
函数f(x)=cos(2x-
)+2sin(x-π 3
)sin(x+π 4
)π 4
=cos(2x-
)+2sin(x-π 3
)sin[π 4
+(x-π 2
)]π 4
=cos(2x-
)+2sin(x-π 3
)cos(x-π 4
)π 4
=cos(2x-
)+sin(2x-π 3
)π 2
=cos(2x-
)-cos2xπ 3
=cos2xcos
+sin2xsinπ 3
-cos2xπ 3
=
sin2x-3 2
cos2x1 2
=sin(2x-
),π 6
∵ω=2,∴T=
=π;2π 2
由正弦函数的单调减区间为[2kπ+
,2kπ+π 2
],k∈Z,3π 2
得到2kπ+
≤2x-π 2
≤2kπ+π 6
,k∈Z,3π 2
解得kπ+
≤x≤kπ+π 3
,k∈Z,5π 6
则函数f(x)的单调减区间为[kπ+
,kπ+π 3
],k∈Z.5π 6
故答案为:π;[kπ+
,kπ+π 3
],k∈Z5π 6