问题 解答题
已知正实数a,b满足
asin
π
5
+bcos
π
5
acos
π
5
-bsin
π
5
=tan
15
,则log3
b
a
的值为(  )
A.
1
3
B.
1
2
C.
3
3
D.
2
2
答案

由于a•sin

π
5
+b•cos
π
5
=
a2+b2
sin(
π
5
+α),a•sin
π
5
-b•cos
π
5
=
a2+b2
cos(
π
5
+α),且tanα=
b
a

则由 

asin
π
5
+bcos
π
5
acos
π
5
-bsin
π
5
=tan
15
,可得tan(
π
5
+α)=tan
15
,∴
π
5
+α=kπ+
15
,k∈z.

解得 α=kπ+

π
3
,∴tanα=
3
,即
b
a
=
3

log3

b
a
=log3
3
=
1
2

故选B.

判断题
单项选择题