问题
填空题
f(x)=
|
答案
由题意得,即在定义域内,f(x)不是单调的.
分情况讨论:
(1)若x≤1时,f(x)=-x2+ax不是单调的,
即对称轴在x=
满足a 2
<1,a 2
解得:a<2
(2)x≤1时,f(x)是单调的,
此时a≥2,f(x)为单调递增.
最大值为f(1)=a-1
故当x>1时,f(x)=ax-1为单调递增,最小值为f(1)=a-1,
因此f(x)在R上单调增,不符条件.
综合得:a<2
故实数a的取值范围是(-∞,2)
故答案为:(-∞,2)