问题 解答题

某汽车制造厂开发了一款新式电动汽车,计划一年生产安装240辆.由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人;他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车.

(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?

(2)如果工厂招聘n(0<n<10)名新工人,使得招聘的新工人和抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?

(3)在(2)的条件下,工厂给安装电动汽车的每名熟练工每月发2000元的工资,给每名新工人每月发1200元的工资,那么工厂应招聘多少名新工人,使新工人的数量多于熟练工,同时工厂每月支出的工资总额W(元)尽可能地少?

答案

(1)设每名熟练工和新工人每月分别可以安装x、y辆电动汽车.

根据题意,得

x+2y=8
2x+3y=14

解得

x=4
y=2

答:每名熟练工和新工人每月分别可以安装4、2辆电动汽车.

(2)设工厂有a名熟练工.

根据题意,得12(4a+2n)=240,

2a+n=10,

n=10-2a,

又a,n都是正整数,0<n<10,

所以n=8,6,4,2.

即工厂有4种新工人的招聘方案.

①n=8,a=1,即新工人8人,熟练工1人;

②n=6,a=2,即新工人6人,熟练工2人;

③n=4,a=3,即新工人4人,熟练工3人;

④n=2,a=4,即新工人2人,熟练工4人.

(3)结合(2)知:要使新工人的数量多于熟练工,则n=8,a=1;或n=6,a=2;或n=4,a=3.

根据题意,得

W=2000a+1200n=2000a+1200(10-2a)=12000-400a.

要使工厂每月支出的工资总额W(元)尽可能地少,则a应最大.

显然当n=4,a=3时,工厂每月支出的工资总额W(元)尽可能地少.

单项选择题 A1型题
单项选择题