问题
选择题
已知函数f(x)=ax2+bx+c,且a>b>c,a+b+c=0,则( )
A.∀x∈(0,1),都有f(x)>0
B.∀x∈(0,1),都有f(x)<0
C.∃x0∈(0,1),使得f(x0)=0
D.∃x0∈(0,1),使得f(x0)>0
答案
因为函数f(x)=ax2+bx+c,且a>b>c,所以二次函数的开口方向向上,并且c<0,
f(0)=c<0,又a+b+c=0,所以f(1)=a+b+c=0,由零点判定定理,可知,∀x∈(0,1),都有f(x)<0.
故选B.