问题 填空题
下列说法:
①“∃x∈R,使2x>3”的否定是“∀x∈R,使2x≤3”;
②函数y=sin(2x+
π
3
)sin(
π
6
-2x)的最小正周期是π,
③命题“函数f(x)在x=x0处有极值,则f′(x0)=0”的否命题是真命题;
④f(x)是(-∞,0)∪(0,+∞)上的奇函数,x>0时的解析式是f(x)=2x,则x<0时的解析式为f(x)=-2-x
其中正确的说法是______.
答案

对于①,根据含量词的命题的否定是量词互换,结论否定,故①对

对于②,y=sin(2x+

π
3
)sin(
π
6
-2x)=
1
2
sin(4x+
3
),所以周期T=
4
=
π
2
,故②错

对于③,“函数f(x)在x=x0处有极值,则f′(x0)=0”的否命题为“函数f(x)在x=x0处没有极值,则f′(x0)≠0”,例如y=x3,x=0时,不是极值点,但是f′(0)=0,所以③错

对于④,设x<0,则-x>0,∴f(-x)=2-x,∵f(x)为奇函数,∴f(x)=-2-x,故④对

故答案为①④

问答题 简答题
判断题