问题
填空题
下列说法: ①“∃x∈R,使2x>3”的否定是“∀x∈R,使2x≤3”; ②函数y=sin(2x+
③命题“函数f(x)在x=x0处有极值,则f′(x0)=0”的否命题是真命题; ④f(x)是(-∞,0)∪(0,+∞)上的奇函数,x>0时的解析式是f(x)=2x,则x<0时的解析式为f(x)=-2-x 其中正确的说法是______. |
答案
对于①,根据含量词的命题的否定是量词互换,结论否定,故①对
对于②,y=sin(2x+
)sin(π 3
-2x)=π 6
sin(4x+1 2
),所以周期T=2π 3
=2π 4
,故②错π 2
对于③,“函数f(x)在x=x0处有极值,则f′(x0)=0”的否命题为“函数f(x)在x=x0处没有极值,则f′(x0)≠0”,例如y=x3,x=0时,不是极值点,但是f′(0)=0,所以③错
对于④,设x<0,则-x>0,∴f(-x)=2-x,∵f(x)为奇函数,∴f(x)=-2-x,故④对
故答案为①④