问题
填空题
若函数f(x)对于∀x∈R都有f(1-x)=f(1+x)和f(1-x)+f(3+x)=0成立,当x∈[0,1]时,f(x)=x,则f(2013)=______.
答案
∵函数f(x)对于∀x∈R都有f(1-x)=f(1+x)和f(1-x)+f(3+x)=0成立,
∴f(x+1)=-f(x+3),
∴f(x)=-f(x+2),
∴f[(x+2)+2]=-f(x+2)=f(x),
∴f(x)是以4为周期的函数,
∵当x∈[0,1]时,f(x)=x,
∴f(2013)=f(4×503+1)=f(1)=1.
故答案为:1.