问题
填空题
若命题“∀x∈R,x2+(a-1)x+1≥0”是真命题,则实数a的取值范围为______.
答案
命题“∀x∈R,x2+(a-1)x+1≥0”是真命题,意即x2+(a-1)x+1≥0恒成立,
只需△=(a-1)2-4≤0,解得-1<a<3
故答案为:-1<a<3
若命题“∀x∈R,x2+(a-1)x+1≥0”是真命题,则实数a的取值范围为______.
命题“∀x∈R,x2+(a-1)x+1≥0”是真命题,意即x2+(a-1)x+1≥0恒成立,
只需△=(a-1)2-4≤0,解得-1<a<3
故答案为:-1<a<3