问题
问答题
设A是n阶矩阵,证明:
1.r(A)=1的充分必要条件是存在n阶非零列向量α,β,使得A=αβT;
答案
参考答案:因为r(A)=1,所以存在非零列向量α,β,使得A=αβT,显然tr(A)=(α,β),因为tr(A)≠0,所以(α,β)=k≠0.
令AX=λX,因为A2=kA,所以λ2X=kλX,或(λ2-kλ)X=0,注意到X≠0,所以矩阵A的特征值为λ=0或λ=k.因为λ1+λ2+…+λn=tr(A)=k,所以λ1=k,λ2=λ3=…=λn=0,由r(0E-A)=r(A)=1,得A一定可以对角化.