问题
填空题
由命题“存在x∈R,使e|x-1|-m≤0”是假命题,得m的取值范围是(-∞,a),则实数a的值是______.
答案
∵命题“存在x∈R,使e|x-1|-m≤0”是假命题
∴对于任意的x∈R,e|x-1|-m>0都成立,即m<e|x-1| 恒成立.
又∵|x-1|≥0.∴e|x-1|≥1∴m<1.所以a=1
故答案为:1
由命题“存在x∈R,使e|x-1|-m≤0”是假命题,得m的取值范围是(-∞,a),则实数a的值是______.
∵命题“存在x∈R,使e|x-1|-m≤0”是假命题
∴对于任意的x∈R,e|x-1|-m>0都成立,即m<e|x-1| 恒成立.
又∵|x-1|≥0.∴e|x-1|≥1∴m<1.所以a=1
故答案为:1