问题 解答题
已知向量
a
=(cosx,sinx),
b
=(-cosx,cosx),函数f(x)=2
a
b
+1.
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)当x∈[0,2π]时,求f(x)的单调减区间.
答案

(Ⅰ)因为f(x)=2

a
b
+1=2(cosx,sinx)•(-cosx,cosx)+1=2(-cos2x+sinxcosx)+1

=1-2cos2x+2sinxcosx=sin2x-cos2x

=

2
sin(2x-
π
4
)

所以f(x)的最小正周期是T=

2
=π.

(Ⅱ)依条件得2kπ+

π
2
≤2x-
π
4
≤2kπ+
2
(k∈Z).

解得kπ+

8
≤x≤kπ+
8
(k∈Z).

x∈[0,2π],所以

8
≤x≤
8
11π
8
≤x≤
15π
8
.

即当x∈[0,2π]时,f(x)的单调减区间是[

8
8
],[
11π
8
15π
8
].

选择题
单项选择题