问题
填空题
函数f(x)=sin4x+cos2x的最小正周期是______.
答案
y=sin4x+cos2x
=(
)2+1-cos2x 2 1+cos2x 2
=
=cos22x+3 4
+1+cos4x 2 4 3 4
=
cos4x+1 8
.7 8
∵ω=4,
∴最小正周期T=
=2π 4
.π 2
故答案为:π 2
函数f(x)=sin4x+cos2x的最小正周期是______.
y=sin4x+cos2x
=(
)2+1-cos2x 2 1+cos2x 2
=
=cos22x+3 4
+1+cos4x 2 4 3 4
=
cos4x+1 8
.7 8
∵ω=4,
∴最小正周期T=
=2π 4
.π 2
故答案为:π 2