问题 解答题

用一块长为a,宽为b(ab)的矩形木板,在二面角为α的墙角处围出一个直三棱柱的谷仓,试问应怎样围才能使谷仓的容积最大?并求出谷仓容积的最大值.

答案

当木板的长边着地,并且谷仓的底面是以a为底边的等腰三角形时,谷仓的容积最大,其最大值为a2bcos.

如图,设矩形木板的长边AB着地,并设OA=xOB=y,则a2=x2+y2-2xycosα≥2xy

-2xycosα=2xy(1-cosα).

∵0<απ,∴1-cosα>0,∴xy (当且仅当x=y时取“=”号),故此时谷仓的容积的最大值V1=(xysinα)b= 同理,若木板短边着地时,谷仓的容积V的最大值V2=ab2cos,

ab,∴V1V2

从而当木板的长边着地,并且谷仓的底面是以a为底边的等腰三角形时,谷仓的容积最大,其最大值为a2bcos.

单项选择题
判断题