问题 解答题

命题p:关于x的不等式x2+2ax+4>0对于一切x∈R恒成立,命题q:指数函数f(x)=(3-2a)x是增函数,若p或q为真,p且q为假,求实数a的取值范围。

答案

解:设

由于关于x的不等式对于一切x∈R恒成立,

所以函g(x)数的图象开口向上且与x轴没有交点,故

函数是增函数,则有3-2a>1,即a<1,

由于p或q为真,p且q为假,可知p、q一真一假,

①若p真q假,则

∴1≤a<2;

②若p假q真,则

∴a≤-2;

综上可知,所求实数a的取值范围是{a|1≤a<2或a≤-2}。

单项选择题
问答题 论述题