问题
选择题
已知圆的方程为x2+y2-6x-8y=0,设圆中过点(2,5)的最长弦与最短弦为分别为AB、CD,则直线AB与CD的斜率之和为( )
A.0
B.-1
C.1
D.-2
答案
把圆的方程化为标准方程得:(x-3)2+(y-4)2=25,
∴圆心坐标为(3,4),
∴过(2,5)的最长弦AB所在直线的斜率为
=-1,5-4 2-3
又最长弦所在的直线与最短弦所在的直线垂直,
∴过(2,5)最短弦CD所在的直线斜率为1,
则直线AB与CD的斜率之和为-1+1=0.
故选A