问题
选择题
已知点A(cos10°,sin10°)、B(sin40°,cos40°),则直线AB的倾斜角等于( )
A.135°
B.120°
C.105°
D.95°
答案
设直线AB的倾斜角为α,则tanα=cos40°-sin10° sin40°-cos10°
=
=cos(30°+10°)-sin10° sin(30°+10°)-cos10° cos30°cos10°-sin30°sin10°-sin10° sin30°cos10°+cos30°sin10°-cos10°
=
=
cos10°-3 2
sin10°3 2
sin10°-3 2
cos10°1 2
(cos60°cos10°-sin60°sin10°)3 cos30°sin10°-sin30°cos10°
=
=-
cos70°3 sin(-20°)
.3
因为0°≤α<180°,所以α=120°.
故选B.