问题
问答题
已知
,矩阵X满足XA-AB=AXA-ABA,则X3=______.
答案
参考答案:化简矩阵方程 XA-AXA=AB-ABA,得(E-A)XA=AB(E-A).
因为A,E-A均可逆,故
X=(E-A)-1AB(E-A)A-1=(A-1-E)-1B(A-1-E).
那么 X3=(A-1-E)-1B3(A-1-E).
因为秩r(B)=1,有B2=2B.从而得B3=22B=4B.于是
[*]
解析:[*]