问题 解答题
已知sinx+cosx=m,(|m|≤
2
,且|m|≠1),
求:(1)sin3x+cos3x;
(2)sin4x+cos4x的值.
答案

∵sinx+cosx=m

∴1+2sinxcosx=m2,即sinxcosx=

m2-1
2

(1)sin3x+cos3x=(sinx+cosx)(1-sinxcosx)=m(1-

m2-1
2
)=
3m-m3
2

(2)sin4x+cos4x=1-2sin2xcos2x=1-2(

m2-1
2
2=
-m4+2m2+1
2

选择题
单项选择题