问题 填空题
设a为锐角,若cos(a+
π
6
)=
4
5
,则sin(2a+
π
12
)的值为______.
答案

∵a为锐角,cos(a+

π
6
)=
4
5

∴a+

π
6
也是锐角,且sin(a+
π
6
)=
1-cos2(a+
π
6
)
=
3
5

∴cosa=cos[(a+

π
6
)-
π
6
]=
4
5
cos
π
6
+
3
5
sin
π
6
=
4
3
+3
10

sina=sin[(a+

π
6
)-
π
6
]=
3
5
cos
π
6
-
4
5
sin
π
6
=
3
3
-4
10

由此可得sin2a=2sinacosa=

24-7
3
50
,cos2a=cos2a-sin2a=
7+24
3
50

又∵sin

π
12
=sin(
π
3
-
π
4
)=
6
-
2
4
,cos
π
12
=cos(
π
3
-
π
4
)=
6
+
2
4

∴sin(2a+

π
12
)=sin2acos
π
12
+cosasin
π
12
=
24-7
3
50
6
+
2
4
+
7+24
3
50
6
-
2
4
=
17
2
50

故答案为:

17
2
50

实验题
填空题