设a为锐角,若cos(a+
|
∵a为锐角,cos(a+
)=π 6
,4 5
∴a+
也是锐角,且sin(a+π 6
)=π 6
=1-cos2(a+
)π 6 3 5
∴cosa=cos[(a+
)-π 6
]=π 6
cos4 5
+π 6
sin3 5
=π 6 4
+33 10
sina=sin[(a+
)-π 6
]=π 6
cos3 5
-π 6
sin4 5
=π 6 3
-43 10
由此可得sin2a=2sinacosa=
,cos2a=cos2a-sin2a=24-7 3 50 7+24 3 50
又∵sin
=sin(π 12
-π 3
)=π 4
,cos
-6 2 4
=cos(π 12
-π 3
)=π 4
+6 2 4
∴sin(2a+
)=sin2acosπ 12
+cosasinπ 12
=π 12
•24-7 3 50
+
+6 2 4
•7+24 3 50
=
-6 2 4 17 2 50
故答案为:17 2 50