问题 解答题
已知:0<α<
π
2
<β<π,cos(β-
π
4
)=
1
3
,sin(α+β)=
4
5

(1)求sin2β的值;
(2)求cos(α+
π
4
)的值.
答案

(1)法一:∵cos(β-

π
4
)=cos
π
4
cosβ+sin
π
4
sinβ

=

2
2
cosβ+
2
2
sinβ=
1
3

∴cosβ+sinβ=

2
3

∴1+sin2β=

2
9
,∴sin2β=-
7
9

法二:sin2β=cos(

π
2
-2β)

=2cos2(β-

π
4
)-1=-
7
9

(2)∵0<α<

π
2
<β<π,∴
π
4
<β-
π
4
4
π
2
<α+β<
2

∴sin(β-

π
4
)>0,cos(α+β)<0.

∵cos(β-

π
4
)=
1
3
,sin(α+β)=
4
5

∴sin(β-

π
4
)=
2
2
3
,cos(α+β)=-
3
5

∴cos(α+

π
4
)=cos[(α+β)-(β-
π
4
)]

=cos(α+β)cos(β-

π
4
)+sin(α+β)sin(β-
π
4

=-

3
5
×
1
3
+
4
5
×
2
2
3
=
8
2
-3
15

单项选择题
判断题