问题 填空题
已知α,β,γ成等差数列,且公差为
3
,m为实常数,则sin2(α+m),sin2(β+m),sin2(γ+m)这三个三角函数式的算术平均数为______.
答案

由题意,α=β-

3
,γ=β+
3

∴sin2(α+m),sin2(β+m),sin2(γ+m)这三个三角函数式的算术平均数为S=

1
3
[sin2(α+m)+sin2(β+m)+sin2(γ+m)]=
1
3
[sin2(β-
3
+m)+sin2(β+m)+sin2(β+
3
+m)]
=
1
3
[
1-cos(2β-
3
+2m)
2
+
1-cos(2β+2m)
2
+
1-cos(2β+
3
+2m)
2
]
=
1
2
-
1
6
[cos(2β+2m-
3
)+cos(2β+2m+
3
)+cos(2β+2m)]
=
1
2
-
1
6
[2cos(2β+2m)cos
3
+cos(2β+2m)]
=
1
2
-
1
6
[2cos(2β+2m)(-
1
2
)+cos(2β+2m)]
=
1
2

故答案为:

1
2

选择题
判断题