问题
填空题
已知α,β,γ成等差数列,且公差为
|
答案
由题意,α=β-
,γ=β+2π 3
,2π 3
∴sin2(α+m),sin2(β+m),sin2(γ+m)这三个三角函数式的算术平均数为S=
[sin2(α+m)+sin2(β+m)+sin2(γ+m)]=1 3
[sin2(β-1 3
+m)+sin2(β+m)+sin2(β+2π 3
+m)]=2π 3
[1 3
+1-cos(2β-
+2m)4π 3 2
+1-cos(2β+2m) 2
]=1-cos(2β+
+2m)4π 3 2
-1 2
[cos(2β+2m-1 6
)+cos(2β+2m+4π 3
)+cos(2β+2m)]=4π 3
-1 2
[2cos(2β+2m)cos1 6
+cos(2β+2m)]=4π 3
-1 2
[2cos(2β+2m)(-1 6
)+cos(2β+2m)]=1 2
.1 2
故答案为:1 2