问题 选择题

已知命题p:∀x1,x2∈R,(f(x2)-f(x1))(x2-x1)≥0,则¬p是(  )

A.∃x1,x2∈R,(f(x2)-f(x1))(x2-x1)≤0

B.∀x1,x2∈R,(f(x2)-f(x1))(x2-x1)≤0

C.∃x1,x2∈R,(f(x2)-f(x1))(x2-x1)<0

D.∀x1,x2∈R,(f(x2)-f(x1))(x2-x1)<0

答案

答案:C

因为全称命题p: ∀x∈M, p(x)的否定¬p是特称命题: ∃x0∈M,¬p(x0)

所以¬p: ∃x1,x2∈R,(f(x2)-f(x1))(x2-x1)<0

单项选择题
单项选择题