问题
选择题
已知命题p:∀x1,x2∈R,(f(x2)-f(x1))(x2-x1)≥0,则¬p是( )
A.∃x1,x2∈R,(f(x2)-f(x1))(x2-x1)≤0
B.∀x1,x2∈R,(f(x2)-f(x1))(x2-x1)≤0
C.∃x1,x2∈R,(f(x2)-f(x1))(x2-x1)<0
D.∀x1,x2∈R,(f(x2)-f(x1))(x2-x1)<0
答案
答案:C
因为全称命题p: ∀x∈M, p(x)的否定¬p是特称命题: ∃x0∈M,¬p(x0)
所以¬p: ∃x1,x2∈R,(f(x2)-f(x1))(x2-x1)<0