问题 解答题
已知函数f(x)=2sin(
1
3
x+φ)(x∈R,-
π
2
<φ<0)图象上一个最低点M(-π,-2)
(Ⅰ)求f(x)的解析式;
(Ⅱ)设α,β∈[0,
π
2
],f(3α+
π
2
)=
10
13
,f(3β+2π)=
6
5
,求cos(α+β)的值.
答案

(I)把点M(-π,-2)代入得-2=2sin(

1
3
×(-π)+φ),

sin(φ-

π
3
)=-1,∵-
π
2
<φ<0
,∴-
6
<φ-
π
3
<-
π
3

φ-

π
3
=-
π
2
,解得φ=-
π
6

f(x)=2sin(

1
3
x-
π
6
).

(II)f(3α+

π
2
)=2sin[
1
3
(3α+
π
2
)-
π
6
]=2sinα=
10
13
,∴sinα=
5
13

α∈[0,

π
2
],∴cosα=
1-sin2α
=
12
13

f(3β+2π)=2sin[

1
3
(3β+2π)-
π
6
]=2sin(β+
π
2
)
=2cosβ=
6
5

cosβ=

3
5
,∵β∈[0,
π
2
]
,∴sinβ=
4
5

∴cos(α+β)=cosαcosβ-sinαsinβ=

12
13
×
3
5
-
5
13
×
4
5
=
16
65

填空题
判断题