问题 解答题
已知函数f(x)=
a
b
,其中
a
=(2sinωx,-1),
b
=(2sin(
3
-ωx),1)
,ω>0,f(x)的图象与直线y=-2的交点的横坐标成公差为π的等差数列.
(1)求f(x)的解析式;
(2)若在△ABC中,A=
3
,b+c=3,F(A)=2,求△ABC的面积.
答案

(1)∵f(x)=

a
b
=2sinωx•2sin(
3
-ωx)-1

=2sin(2ωx-

π
6
),

∵f(x)的图象与直线y=-2的交点的横坐标成公差为π的等差数列,

∴T=

=π,

∴ω=1,

∴f(x)=2sin(2x-

π
6
),

(2)∵f(A)=2sin(2A-

π
6
)=2,

∴sin(2A-

π
6
)=1,

∴A=

π
3

∵3=b2+c2-2bccosA=b2+c2-bc=(b-c)2-3bc=9-3bc,

∴bc=2,

∴S=

1
2
bcsinA=
3
2

单项选择题
单项选择题