问题 解答题

已知点P是圆C:x2+y2=1外一点,设k1,k2分别是过点P的圆C两条切线的斜率.

(1)若点P坐标为(2,2),求k1•k2的值;

(2)若k1•k2=-λ(λ≠-1,0),求点P的轨迹M的方程,并指出曲线M所在圆锥曲线的类型.

答案

(1)设过点P的切线斜率为k,方程为y-2=k(x-2),即kx-y-2k+2=0;

∵其与圆相切,则

|2k-2|
k2+1
=1,化简得3k2-8k+3=0,

∴k1•k2=1.

(2)设点P坐标为(x0,y0),过点P的切线斜率为k,

则方程为y-y0=k(x-x0),即kx-y-2k+2=0,

∵其与圆相切,∴

|kx0-y0|
k2+ 1
=1,化简得(x02-1)k2-2x0y0+(y02-1)=0,

∵k1,k2存在,

则x0≠1且x0≠-1,△=(2x0y02-4(x02-1)(y02-1)=4(x02+y02)-4>0,

∵k1,k2是方程的两个根,

∴k1•k2=

y02-1
x02-1
=-λ,化简得λx02+y02=λ+1.

即所求的曲线M的方程为:λx2+y2=λ+1(x≠±1);

若λ∈(-∞,-1)时,所在圆锥曲线M是焦点在x轴上的双曲线;

若λ∈(-1,0)时,所在圆锥曲线M是焦点在y轴上的双曲线;

若λ∈(0,1),M所在圆锥曲线M是焦点在x轴上的椭圆;

若λ=1时,M所在曲线M是圆;

若λ∈(1,+∞)时,所在圆锥曲线M是焦点在y轴上的椭圆.

单项选择题
多项选择题