问题
解答题
已知函数f(x)=sin2ωx+
(Ⅰ)求ω的值; (Ⅱ)将函数y=f(x)的图象向左平移
(Ⅲ)求函数f(x)在区间[0,
|
答案
f(x)=sin2ωx+
sinωxsin(ωx+3
)+1π 2
=
+ 1-cos2ωx 2
sinωxcosωx+13
=
-3 2
cos2ωx+1 2
sin2ωx3 2
=
+sin(2ωx-3 2
)π 6
(I)由周期公式可得,T=
=π2π 2ω
∴ω=1,f(x)=
+sin(2x-3 2
)π 6
(II)由题意可得,g(x)=f(x+
)=π 6
+sin[2(x+3 2
)-π 6
]π 6
=
+sin(2x+3 2
)π 6
令
π+2kπ≤2x+1 2
≤π 6
+2kπ,k∈Z3π 2
可得,
+kπ≤x≤π 6
+kπk∈Z2π 3
函数g(x)的单独递减区间为[
+kπ,π 6
+kπ],k∈Z2π 3
(III)由x∈[0,
]可得,-2π 3
≤2x-π 6
≤π 6 7π 6
∴-
≤sin(2x-1 2
)≤1π 6
∴1≤f(x)≤5 2
故f(x) max=
,f(x)min=15 2