问题 解答题
已知函数f(x)=sin2ωx+
3
sinωxsin(ωx+
π
2
)+1
(ω>0)的最小正周期为π.
(Ⅰ)求ω的值;
(Ⅱ)将函数y=f(x)的图象向左平移
π
6
个单位后,得到函数y=g(x)的图象,求g(x)的单调递减区间;
(Ⅲ)求函数f(x)在区间[0,
3
]上的最值.
答案

f(x)=sin2ωx+

3
sinωxsin(ωx+
π
2
)+1

=

1-cos2ωx
2
3
sinωxcosωx+1

=

3
2
-
1
2
cos2ωx+
3
2
sin2ωx

=

3
2
+sin(2ωx-
π
6
)

(I)由周期公式可得,T=

∴ω=1,f(x)=

3
2
+sin(2x-
π
6
)

(II)由题意可得,g(x)=f(x+

π
6
)=
3
2
+
sin[2(x+
π
6
)-
π
6
]

=

3
2
+sin(2x+
π
6
)

1
2
π+2kπ≤2x+
π
6
2
+2kπ,k∈Z

可得,

π
6
+kπ≤x≤
3
+kπk∈Z

函数g(x)的单独递减区间为[

π
6
+kπ,
3
+kπ],k∈Z

(III)由x∈[0,

3
]可得,-
π
6
≤2x-
π
6
6

-

1
2
≤sin(2x-
π
6
)≤1

1≤f(x)≤

5
2

f(x) max=

5
2
,f(x)min=1

单项选择题
选择题