问题 选择题
设f(x)=
sinx
x
,则满足f(
6
)<f(
6
+
π
6
)的最小正整数n是(  )
A.7B.8C.9D.10
答案

要使 f(

6
)=
sin
6
6
<f(
6
+
π
6
)=
sin(
6
+
π
6
6
+
π
6
=
sin
(n+1)π
6
(n+1)π
6
成立,只要比较函数 y=sin
π
6
x
上的整点与原点连线的斜率即可.

函数y=sin

π
6
x上的横坐标为正数的整点分别为

(1,

1
2
),(2,
3
2
),(3,1),(4,
3
2
),(5,
1
2
),(6,0),(7,-
1
2
),(8,-
3
2
),

(9,-1),(10,-

3
2
),…

可得

-1-0
9-0
=-
1
9
-
3
2
-0
10-0
=-
3
20
,所以最小正整数n=9

故选C.

简答题
单项选择题