化简:
|
∵tan(3π-α)=-tan α,sin(π-α)=sin α,sin(2π-α)=-sin α,cos(2π+α)=cos α,sin(
-α)=-cos α,3π 2
cos(α-
)=cos(7π 2
-α)=cos(4π-7π 2
-α)=cos(π 2
+α)=-sin α,sin(π 2
+α)=-cos α,3π 2
∴原式=
+-tanα sinα•(-cosα) -sinα•(-sinα) -cosα•cosα
=
-1 cos2α sin2α cos2α
=1-sin2α cos2α
=
=1.cos2α cos2α